Math  /  Trigonometry

QuestionSolve the following equations
1. cos(4x)8=0\cos (4 x)-8=0 for the four smallest positive solutions.
2. cos(x)(2sin(x)+1)=0\cos (x) \cdot(2 \sin (x)+1)=0 on the interval [0,2π][0,2 \pi]
3. 2cos2(x)+3cos(x)+1=02 \cos ^{2}(x)+3 \cos (x)+1=0 on the interval [0,2π][0,2 \pi]

Studdy Solution
1. No solutions for cos(4x)8=0\cos(4x) - 8 = 0.
2. For cos(x)(2sin(x)+1)=0\cos(x) \cdot (2\sin(x) + 1) = 0 on [0,2π][0, 2\pi], xx can be π2\frac{\pi}{2}, 3π2\frac{3\pi}{2}, 7π6\frac{7\pi}{6}, or 11π6\frac{11\pi}{6}.
3. For 2cos2(x)+3cos(x)+1=02\cos^2(x) + 3\cos(x) + 1 = 0 on [0,2π][0, 2\pi], xx can be 2π3\frac{2\pi}{3}, 4π3\frac{4\pi}{3}, or π\pi.

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord