Math  /  Calculus

QuestionLet y=ln(x2+y2)y=\ln \left(x^{2}+y^{2}\right). Determine the derivative yy^{\prime} at the point (e39,3)\left(\sqrt{e^{3}-9}, 3\right). y(e39)=y^{\prime}\left(\sqrt{e^{3}-9}\right)=

Studdy Solution
Simplify the expression:
Calculate (e39)2 (\sqrt{e^3 - 9})^2 :
(e39)2=e39 (\sqrt{e^3 - 9})^2 = e^3 - 9
Substitute back:
y=2e39e39+96 y' = \frac{2\sqrt{e^3 - 9}}{e^3 - 9 + 9 - 6}
y=2e39e36 y' = \frac{2\sqrt{e^3 - 9}}{e^3 - 6}
The derivative y y' at the point (e39,3) \left(\sqrt{e^3 - 9}, 3\right) is:
2e39e36 \boxed{\frac{2\sqrt{e^3 - 9}}{e^3 - 6}}

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord