Math  /  Algebra

QuestionLet u,w,v1,v2u, w, v_{1}, v_{2}, and v3v_{3} be the vectors in R4\mathbb{R}^{4} defined by u=[17121610]w=[29122914]v1=[72619]v2=[219118]v3=[68111]u=\left[\begin{array}{l} 17 \\ 12 \\ 16 \\ 10 \end{array}\right] \quad w=\left[\begin{array}{c} 29 \\ 12 \\ -29 \\ 14 \end{array}\right] \quad v_{1}=\left[\begin{array}{c} 7 \\ -2 \\ 6 \\ -19 \end{array}\right] \quad v_{2}=\left[\begin{array}{c} -2 \\ -19 \\ 1 \\ -18 \end{array}\right] \quad v_{3}=\left[\begin{array}{c} 6 \\ -8 \\ -11 \\ -1 \end{array}\right] (a) Is uspan{v1,v2,v3}u \in \operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\} ? Write all zeros if it is not in the span or write zero as a non-trivial (not all zero coefficients) linear combination of u1,v1,v2u_{1}, v_{1}, v_{2}, and v3v_{3} if uu is in the span. 0=u+v1+v2+v30=\square u+\square v_{1}+\square v_{2}+\square v_{3} (b) Is wspan{v1,v2,v3}w \in \operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\} ? Write all zeros if it is not or if it is in the span write zero as a non-trivial (not all zero coefficients) linear combination of ww, v1,v2v_{1}, v_{2}, and v3v_{3} if ww is in the span. 0=w+v1+v2+v30=\square w+\square v_{1}+\square v_{2}+\square v_{3} (c) Type the dimension of span{v1,v2,v3,u}\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, u\right\} : \square

Studdy Solution
(a) 0 = \(-1 uu +2+2 v1v_1 1 -1 v2v_2 +0+0 v3v_3. (b) 0=0w+0v1+0v2+0v30 = 0w + 0v_1 + 0v_2 + 0v_3 (since ww is not in the span). (c) The dimension is 2.

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord