Math  /  Calculus

QuestionLet f(x)=x2+xf(x)=\sqrt{x^{2}+x} for 1x71 \leq x \leq 7. We wish to estimate 17f(x)dx\int_{1}^{7} f(x) d x by the Trapezoidal Rule. a) Divide the domain of ff into 4 sub-intervals of equal length. Calculate their common length Δx\Delta x (exact value). b) Find the approximation of 17f(x)dx\int_{1}^{7} f(x) d x that the Trapezoidal Rule produces with 4 sub-intervals. Give the answer with ±0.0001\pm 0.0001 precision. Number

Studdy Solution
Calculate the approximation to the specified precision:
First, compute each term:
21.4142\sqrt{2} \approx 1.4142
28.752×2.9585.9162\sqrt{8.75} \approx 2 \times 2.958 \approx 5.916
2202×4.4728.9442\sqrt{20} \approx 2 \times 4.472 \approx 8.944
235.752×5.97911.9582\sqrt{35.75} \approx 2 \times 5.979 \approx 11.958
567.4833\sqrt{56} \approx 7.4833
Now substitute these into the formula:
17f(x)dx1.52[1.4142+5.916+8.944+11.958+7.4833]\int_{1}^{7} f(x) \, dx \approx \frac{1.5}{2} \left[ 1.4142 + 5.916 + 8.944 + 11.958 + 7.4833 \right]
Calculate the sum inside the brackets:
1.4142+5.916+8.944+11.958+7.483335.71551.4142 + 5.916 + 8.944 + 11.958 + 7.4833 \approx 35.7155
Now calculate the final approximation:
17f(x)dx1.52×35.715526.786625\int_{1}^{7} f(x) \, dx \approx \frac{1.5}{2} \times 35.7155 \approx 26.786625
Rounding to ±0.0001\pm 0.0001 precision:
26.7866\boxed{26.7866}

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord