Math  /  Algebra

QuestionIf x+zyx+z \propto y and y+zxy+z \propto x, prove x+yzx+y \propto z

Studdy Solution
Assuming 1k2k10 1 - k_2 \cdot k_1 \neq 0 , solve for y y in terms of z z :
y=z(k2+1)1k2k1 y = \frac{-z(k_2 + 1)}{1 - k_2 \cdot k_1}
Substitute back to express x x in terms of z z using x=k1yz x = k_1 \cdot y - z :
x=k1z(k2+1)1k2k1z x = k_1 \cdot \frac{-z(k_2 + 1)}{1 - k_2 \cdot k_1} - z
Combine x x and y y :
x+y=z(k1(k2+1)+(k2+1))1k2k1 x + y = \frac{-z(k_1 \cdot (k_2 + 1) + (k_2 + 1))}{1 - k_2 \cdot k_1}
Simplify:
x+y=z(k1+1)(k2+1)1k2k1 x + y = \frac{-z(k_1 + 1)(k_2 + 1)}{1 - k_2 \cdot k_1}
Thus, x+yz x + y \propto z .

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord