Math  /  Calculus

QuestionIf f(x)=sin(4x+π2)f(x)=\sin \left(4 x+\frac{\pi}{2}\right), find f(π4)f^{\prime}\left(\frac{\pi}{4}\right). 0 4 4-4 1

Studdy Solution
Evaluate f(x) f'(x) at x=π4 x = \frac{\pi}{4} .
Substitute x=π4 x = \frac{\pi}{4} into the derivative:
f(π4)=4cos(4(π4)+π2) f'\left(\frac{\pi}{4}\right) = 4 \cos \left(4\left(\frac{\pi}{4}\right) + \frac{\pi}{2}\right)
Simplify the expression inside the cosine function:
4(π4)=π 4\left(\frac{\pi}{4}\right) = \pi
Thus:
f(π4)=4cos(π+π2) f'\left(\frac{\pi}{4}\right) = 4 \cos \left(\pi + \frac{\pi}{2}\right)
f(π4)=4cos(3π2) f'\left(\frac{\pi}{4}\right) = 4 \cos \left(\frac{3\pi}{2}\right)
The value of cos(3π2) \cos \left(\frac{3\pi}{2}\right) is 0 0 .
Therefore:
f(π4)=4×0=0 f'\left(\frac{\pi}{4}\right) = 4 \times 0 = 0
The value of f(π4) f'\left(\frac{\pi}{4}\right) is:
0 \boxed{0}

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord