Math  /  Algebra

QuestionIf a=i+j+3k\mathbf{a}=\mathbf{i}+\mathbf{j}+3 \mathbf{k} and b=i+j+3k\mathbf{b}=\mathbf{i}+\mathbf{j}+3 \mathbf{k} Compute the cross product a×b\mathbf{a} \times \mathbf{b}. a×b=i+j+k\mathbf{a} \times \mathbf{b}=\square \mathrm{i}+\square \mathrm{j}+\square \mathrm{k}

Studdy Solution
Apply the cross product formula to vectors a\mathbf{a} and b\mathbf{b}:
Since a=b\mathbf{a} = \mathbf{b}, the cross product a×b\mathbf{a} \times \mathbf{b} is:
a×b=(1331)i(1331)j+(1111)k\mathbf{a} \times \mathbf{b} = (1 \cdot 3 - 3 \cdot 1) \mathbf{i} - (1 \cdot 3 - 3 \cdot 1) \mathbf{j} + (1 \cdot 1 - 1 \cdot 1) \mathbf{k}
Simplifying each term:
=(33)i(33)j+(11)k= (3 - 3) \mathbf{i} - (3 - 3) \mathbf{j} + (1 - 1) \mathbf{k}
=0i+0j+0k= 0 \mathbf{i} + 0 \mathbf{j} + 0 \mathbf{k}
The cross product a×b\mathbf{a} \times \mathbf{b} is:
0i+0j+0k\boxed{0 \mathbf{i} + 0 \mathbf{j} + 0 \mathbf{k}}

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord