Math  /  Calculus

QuestionGiven x+y=y3\sqrt{x+y}=y^{3}, find dydx\frac{d y}{d x} in terms of xx and yy.

Studdy Solution
Solve for dydx\frac{dy}{dx}.
First, distribute on the left side: 12x+y+12x+ydydx=3y2dydx \frac{1}{2\sqrt{x+y}} + \frac{1}{2\sqrt{x+y}} \cdot \frac{dy}{dx} = 3y^2 \cdot \frac{dy}{dx}
Rearrange terms to isolate dydx\frac{dy}{dx}: 12x+y=3y2dydx12x+ydydx \frac{1}{2\sqrt{x+y}} = 3y^2 \cdot \frac{dy}{dx} - \frac{1}{2\sqrt{x+y}} \cdot \frac{dy}{dx}
Factor out dydx\frac{dy}{dx} from the right side: 12x+y=(3y212x+y)dydx \frac{1}{2\sqrt{x+y}} = \left(3y^2 - \frac{1}{2\sqrt{x+y}}\right) \cdot \frac{dy}{dx}
Finally, solve for dydx\frac{dy}{dx}: dydx=12x+y3y212x+y \frac{dy}{dx} = \frac{\frac{1}{2\sqrt{x+y}}}{3y^2 - \frac{1}{2\sqrt{x+y}}}
The derivative dydx\frac{dy}{dx} in terms of xx and yy is:
dydx=12x+y(3y212x+y) \frac{dy}{dx} = \frac{1}{2\sqrt{x+y} \left(3y^2 - \frac{1}{2\sqrt{x+y}}\right)}

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord