Math  /  Algebra

QuestionGiven u1=(6,1)\mathbf{u}_{1}=(6,-1) and u2=(3,2)\mathbf{u}_{2}=(3,2), if we let v1=u1\mathbf{v}_{1}=\mathbf{u}_{1}, use the Gram-Schmidt process to find v2\mathbf{v}_{2} If needed, enter your answers as fractions, not decimals.
This question accepts'answers that are in a form like " (1,3)(-1,3) " or " (3,7,3z)(3,7,3 z) ". The entries can be numbers or formulas. Help | Preview

Studdy Solution
Subtract the projection from u2\mathbf{u}_2 to find v2\mathbf{v}_2:
v2=u2projv1u2=(3,2)(9637,1637)\mathbf{v}_2 = \mathbf{u}_2 - \text{proj}_{\mathbf{v}_1} \mathbf{u}_2 = (3, 2) - \left(\frac{96}{37}, -\frac{16}{37}\right)
Calculate each component:
v2=(39637,2+1637)\mathbf{v}_2 = \left(3 - \frac{96}{37}, 2 + \frac{16}{37}\right)
Simplify the components:
v2=(111379637,7437+1637)=(1537,9037)\mathbf{v}_2 = \left(\frac{111}{37} - \frac{96}{37}, \frac{74}{37} + \frac{16}{37}\right) = \left(\frac{15}{37}, \frac{90}{37}\right)
The orthogonal vector v2\mathbf{v}_2 is:
(1537,9037)\boxed{\left(\frac{15}{37}, \frac{90}{37}\right)}

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord