Math  /  Geometry

QuestionGiven: SS is the midpoint of QT\overline{Q T} and QRTU\overline{Q R} \| \overline{T U}. Prove: QSRTSU\triangle Q S R \cong \triangle T S U Use the word bank provided to complete the proof. \begin{tabular}{|c|c|} \hline Statements & Reasons \\ \hline QSRTSU\triangle Q S R \cong \triangle T S U & Given \\ \hline QRTU\overline{Q R} \| \overline{T U} & atematru unterior angles \\ \hline QS=SIQ S=S I & Definition of Midpoint \\ \hline QT\angle Q \cong \angle T & \\ \hline & Vertical Angles Theorem \\ \hline \end{tabular}

Studdy Solution
Concluir la congruencia de los triángulos:
Por el criterio de congruencia de ángulo-lado-ángulo (ASA), los triángulos son congruentes:
QSRTSU \triangle QSR \cong \triangle TSU
La congruencia de los triángulos es:
QSRTSU \boxed{\triangle QSR \cong \triangle TSU}

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord