Math  /  Algebra

QuestionGegeben sind zwei Glieder einer geometrischen Folge. Finde b0b_{0}, den Quotienten qq und die Formel für bnb_{n}.
a) b1=98;b2=686b_{1}=98 ; b_{2}=686 b) b2=216;b4=7776b_{2}=216 ; b_{4}=7776 c) b3=1875;b5=46875b_{3}=1875 ; b_{5}=46875

Studdy Solution
Finally, we can write the formula for bnb_{n}.
a) For b0=14b_{0}=14 and q=q=, we havebn=14nb_{n} =14 \cdot^{n}b) For b0=6b_{0}=6 and q=6q=6, we havebn=66nb_{n} =6 \cdot6^{n}c) For b0=15b_{0}=15 and q=5q=5, we havebn=155nb_{n} =15 \cdot5^{n}

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord