Math  /  Algebra

Questionyα1xy=k(1x)=kx\begin{array}{c} y \alpha \frac{1}{x} \\ y=k\left(\frac{1}{x}\right)=\frac{k}{x} \end{array}
Follow these steps to solve an inverse variation problem. - Step 1: Find the constant of proportionality, kk. - Step 2: Write out the equation y=kxy=\frac{k}{x}. - Step 3: Solve for the missing values.
Example Fill in the missing values, assuming that y is inversely proportional to x (to 2 decimal places). \begin{tabular}{|c|c|c|c|} \hlinexx & 275 & 589 & \square \\ \hlineyy & 133 & \square & 374 \\ \hline \end{tabular} HINT

Studdy Solution
Solve for the missing values in the table.
First, find y y when x=589 x = 589 :
y=36575589 y = \frac{36575}{589}
Calculate y y :
y62.09 y \approx 62.09
Next, find x x when y=374 y = 374 :
374=36575x 374 = \frac{36575}{x}
To find x x , multiply both sides by x x and then divide by 374:
x=36575374 x = \frac{36575}{374}
Calculate x x :
x97.79 x \approx 97.79
The completed table is:
x27558997.79y13362.09374\begin{array}{|c|c|c|c|} \hline x & 275 & 589 & 97.79 \\ \hline y & 133 & 62.09 & 374 \\ \hline \end{array}

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord