Math  /  Calculus

QuestionFind yy^{\prime \prime} by implicit differentiation. 2x3+5y3=42 x^{3}+5 y^{3}=4

Studdy Solution
Differentiate y=2x25y2y' = \frac{-2x^2}{5y^2} implicitly with respect to xx to find yy''.
Using the quotient rule, where u=2x2u = -2x^2 and v=5y2v = 5y^2, we have: y=vdudxudvdxv2 y'' = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}
Calculate dudx\frac{du}{dx}: dudx=ddx(2x2)=4x \frac{du}{dx} = \frac{d}{dx}(-2x^2) = -4x
Calculate dvdx\frac{dv}{dx} using the chain rule: dvdx=ddx(5y2)=10ydydx=10yy \frac{dv}{dx} = \frac{d}{dx}(5y^2) = 10y \cdot \frac{dy}{dx} = 10y \cdot y'
Substitute y=2x25y2y' = \frac{-2x^2}{5y^2} into dvdx\frac{dv}{dx}: dvdx=10y2x25y2=20x2y5y2=4x2y \frac{dv}{dx} = 10y \cdot \frac{-2x^2}{5y^2} = \frac{-20x^2y}{5y^2} = \frac{-4x^2}{y}
Substitute into the quotient rule: y=5y2(4x)(2x2)(4x2y)(5y2)2 y'' = \frac{5y^2 \cdot (-4x) - (-2x^2) \cdot \left(\frac{-4x^2}{y}\right)}{(5y^2)^2}
Simplify: y=20xy2+8x4y25y4 y'' = \frac{-20xy^2 + \frac{8x^4}{y}}{25y^4}
Further simplify: y=20xy3+8x425y5 y'' = \frac{-20xy^3 + 8x^4}{25y^5}
The second derivative yy'' is: y=20xy3+8x425y5 y'' = \frac{-20xy^3 + 8x^4}{25y^5}

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord