Math  /  Calculus

QuestionFind dydx\frac{dy}{dx} for the function y=cos2(3x+2) y = \cos^2(3x + 2) .

Studdy Solution
Combine the derivatives using the chain rule:
dydx=ddu(cos(u))2dudx \frac{dy}{dx} = \frac{d}{du}(\cos(u))^2 \cdot \frac{du}{dx}
Substitute the derivatives from previous steps:
dydx=2cos(u)(sin(u))3 \frac{dy}{dx} = 2\cos(u)(-\sin(u)) \cdot 3
dydx=6cos(u)sin(u) \frac{dy}{dx} = -6\cos(u)\sin(u)
Substitute back u=3x+2 u = 3x + 2 :
dydx=6cos(3x+2)sin(3x+2) \frac{dy}{dx} = -6\cos(3x + 2)\sin(3x + 2)
The derivative dydx\frac{dy}{dx} is:
6cos(3x+2)sin(3x+2) \boxed{-6\cos(3x + 2)\sin(3x + 2)}

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord