Math  /  Calculus

QuestionFind any relative extrema of the function. (Round your ar f(x)=arctan(x)arctan(x9)f(x)=\arctan (x)-\arctan (x-9) relative maximum (x,y)=(4.5,2.702x)(x, y)=(4.5,2.702 x)

Studdy Solution
Calculate the function value at the critical point to find the relative maximum.
f(4.5)=arctan(4.5)arctan(4.59) f(4.5) = \arctan(4.5) - \arctan(4.5-9)
f(4.5)=arctan(4.5)arctan(4.5) f(4.5) = \arctan(4.5) - \arctan(-4.5)
Using the property arctan(x)=arctan(x) \arctan(-x) = -\arctan(x) :
f(4.5)=arctan(4.5)+arctan(4.5) f(4.5) = \arctan(4.5) + \arctan(4.5)
f(4.5)=2arctan(4.5) f(4.5) = 2\arctan(4.5)
Using a calculator, approximate arctan(4.5)1.351 \arctan(4.5) \approx 1.351 :
f(4.5)2×1.351=2.702 f(4.5) \approx 2 \times 1.351 = 2.702
The relative maximum is at (x,y)=(4.5,2.702) (x, y) = (4.5, 2.702) .
The relative maximum of the function is at (x,y)=(4.5,2.702) (x, y) = (4.5, 2.702) .

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord