Math  /  Calculus

QuestionFill in each blank. 6+65+625+6125limnan=limnSn=\begin{array}{l} 6+\frac{6}{5}+\frac{6}{25}+\frac{6}{125} \ldots \\ \lim _{n \rightarrow \infty} a_{n}= \\ \lim _{n \rightarrow \infty} S_{n}= \end{array} \square \square

Studdy Solution
Determine the sum of the infinite series Sn S_n :
The sum of an infinite geometric series is given by:
S=a1r=6115=645=6×54=304=7.5 S = \frac{a}{1-r} = \frac{6}{1-\frac{1}{5}} = \frac{6}{\frac{4}{5}} = 6 \times \frac{5}{4} = \frac{30}{4} = 7.5
Thus, limnSn=7.5 \lim_{n \rightarrow \infty} S_n = 7.5 .
The completed blanks are:
1. limnan=0\lim_{n \rightarrow \infty} a_n = 0
2. limnSn=7.5\lim_{n \rightarrow \infty} S_n = 7.5

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord