Math  /  Trigonometry

QuestionEstablish the identity. cosθ+cos(3θ)sinθsin(3θ)=cotθ\frac{\cos \theta+\cos (3 \theta)}{\sin \theta-\sin (3 \theta)}=-\cot \theta
Choose the correct sequence of steps to establish the identity. A. cosθ+cos(3θ)sinθsin(3θ)=2sin(2θ)cosθ2sin(2θ)sinθ=cotθ\frac{\cos \theta+\cos (3 \theta)}{\sin \theta-\sin (3 \theta)}=\frac{-2 \sin (2 \theta) \cos \theta}{2 \sin (2 \theta) \sin \theta}=-\cot \theta B. cosθ+cos(3θ)sinθsin(3θ)=2cosθcosθ2cosθsinθ=cotθ\frac{\cos \theta+\cos (3 \theta)}{\sin \theta-\sin (3 \theta)}=\frac{-2 \cos \theta \cos \theta}{2 \cos \theta \sin \theta}=-\cot \theta c. cosθ+cos(3θ)sinθsin(3θ)=2cos(2θ)cosθ2sinθcos(2θ)=cotθ\frac{\cos \theta+\cos (3 \theta)}{\sin \theta-\sin (3 \theta)}=\frac{2 \cos (2 \theta) \cos \theta}{-2 \sin \theta \cos (2 \theta)}=-\cot \theta D. cosθ+cos(3θ)sinθsin(3θ)=2sinθcosθ2sinθsinθ=cotθ\frac{\cos \theta+\cos (3 \theta)}{\sin \theta-\sin (3 \theta)}=\frac{-2 \sin \theta \cos \theta}{2 \sin \theta \sin \theta}=-\cot \theta

Studdy Solution
The correct sequence of steps is C, and we've shown that cosθ+cos(3θ)sinθsin(3θ)=cotθ\frac{\cos \theta+\cos (3 \theta)}{\sin \theta-\sin (3 \theta)}=-\cot \theta.

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord