Math  /  Algebra

QuestionCondense the following into a single log. 4log3(x)12log3(y)3log3(2)=4 \log _{3}(x)-\frac{1}{2} \log _{3}(y)-3 \log _{3}(2)= \square

Studdy Solution
Combine the logarithms using the properties of logarithms. Specifically, use the product rule logb(m)+logb(n)=logb(mn)\log_b(m) + \log_b(n) = \log_b(m \cdot n) and the quotient rule logb(m)logb(n)=logb(mn)\log_b(m) - \log_b(n) = \log_b\left(\frac{m}{n}\right).
Combine all terms into a single logarithm: log3(x4)+log3(y12)+log3(23)=log3(x4y1223) \log_{3}(x^4) + \log_{3}(y^{-\frac{1}{2}}) + \log_{3}(2^{-3}) = \log_{3}\left(\frac{x^4}{y^{\frac{1}{2}} \cdot 2^3}\right)
Simplify the expression inside the logarithm: log3(x4y128) \log_{3}\left(\frac{x^4}{y^{\frac{1}{2}} \cdot 8}\right)
The condensed single logarithm is: log3(x48y) \boxed{\log_{3}\left(\frac{x^4}{8\sqrt{y}}\right)}

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord