Math  /  Data & Statistics

QuestionA simple random sample from a population with a normal distribution of 102 body temperatures has xˉ=98.70F\bar{x}=98.70^{\circ} \mathrm{F} and s=0.69F\mathrm{s}=0.69^{\circ} \mathrm{F}. Construct an 80%80 \% confidence interval estimate of the standard deviation of body temperature of all healthy humans.
Click the icon to view the table of Chi-Square critical values.

Studdy Solution
Convert the variance confidence interval to a standard deviation confidence interval by taking the square root of the endpoints:
(101×(0.69)2χright2,101×(0.69)2χleft2) \left( \sqrt{\frac{101 \times (0.69)^2}{\chi^2_{\text{right}}}}, \sqrt{\frac{101 \times (0.69)^2}{\chi^2_{\text{left}}}} \right)
The 80% 80\% confidence interval estimate for the standard deviation of body temperature is:
(101×(0.69)2χright2,101×(0.69)2χleft2) \left( \sqrt{\frac{101 \times (0.69)^2}{\chi^2_{\text{right}}}}, \sqrt{\frac{101 \times (0.69)^2}{\chi^2_{\text{left}}}} \right)

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord