Math  /  Trigonometry

Question5. Eliminate θ\theta from each of the following pairs of expressions. (a) x+1=cos2θ,y=sinθx+1=\cos 2 \theta, y=\sin \theta, (c) y3=cos2θ,x=2sinθy-3=\cos 2 \theta, x=2-\sin \theta.
6. Angle DD is acute and tanD=34\tan D=\frac{3}{4}. Find (a) sinD\sin D, (b) sin2D\sin 2 D, (c) sin(12D)\sin \left(\frac{1}{2} D\right).
7. Angle EE lies between 00^{\circ} and 360360^{\circ}. Find sin(12E)\sin \left(\frac{1}{2} E\right) given that cosE\cos E is (a) 38\frac{3}{8}, (b) 38-\frac{3}{8}.
8. (a) Obtain an expression for sin3θ\sin 3 \theta involving powers of sinθ\sin \theta. (b) If sinθ=14\sin \theta=\frac{1}{4} find the value of sin3θ\sin 3 \theta.
9. (a) Obtain an expression for cos3θ\cos 3 \theta involving power of cosθ\cos \theta. (b) If sinθ=1/5\sin \theta=1 / \sqrt{ } 5 and θ\theta is obtuse, find the value of cos3θ\cos 3 \theta.
10. In triangle ABC,BA^C=\mathrm{ABC}, \mathrm{BÂC}=

Studdy Solution
For problem 9(b), given sinθ=15\sin \theta = \frac{1}{\sqrt{5}} and θ\theta is obtuse, find cosθ=1(15)2\cos \theta = -\sqrt{1 - \left(\frac{1}{\sqrt{5}}\right)^2}.
Substitute into the identity: cos3θ=4(cosθ)33(cosθ) \cos 3\theta = 4(-\cos \theta)^3 - 3(-\cos \theta)
Calculate cos3θ\cos 3\theta.

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord