Math  /  Discrete

Question3. Find the sum of the sequence 25,30,35,25,30,35, \ldots A. 25(n2+9n)\frac{2}{5}\left(n^{2}+9 n\right) B. 52(n2+9n)\frac{5}{2}\left(n^{2}+9 n\right) C. 92(n2+5n)\frac{9}{2}\left(n^{2}+5 n\right) D. 92(n29n)\frac{9}{2}\left(n^{2}-9 n\right)

Studdy Solution
Distribute and simplify the expression:
Sn=n2×5n+n2×45 S_n = \frac{n}{2} \times 5n + \frac{n}{2} \times 45 Sn=5n22+45n2 S_n = \frac{5n^2}{2} + \frac{45n}{2} Sn=52(n2+9n) S_n = \frac{5}{2}(n^2 + 9n)
The expression matches option B:
52(n2+9n) \boxed{\frac{5}{2}(n^2 + 9n)}

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord