Math  /  Calculus

Question2. Compute the derivative DfD_{f} for each of the following functio (a) f(t)=t2tcos(t)f(t)=\begin{array}{c}t^{2} \\ t \cos (t)\end{array} (b) f(x,y)=x2y3cos(xy)f(x, y)=x^{2} y^{3} \cos (x y) (c) f(x,y)=[x+yxyx2ey]f(x, y)=\left[\begin{array}{c}x+y \\ x y \\ x^{2} e^{y}\end{array}\right]

Studdy Solution
Calculate each partial derivative:
1. x(x+y)=1\frac{\partial}{\partial x}(x+y) = 1, y(x+y)=1\frac{\partial}{\partial y}(x+y) = 1
2. x(xy)=y\frac{\partial}{\partial x}(xy) = y, y(xy)=x\frac{\partial}{\partial y}(xy) = x
3. x(x2ey)=2xey\frac{\partial}{\partial x}(x^2 e^y) = 2xe^y, y(x2ey)=x2ey\frac{\partial}{\partial y}(x^2 e^y) = x^2 e^y

Thus, the Jacobian matrix is:
Df(x,y)=[11yx2xeyx2ey] D_f(x, y) = \begin{bmatrix} 1 & 1 \\ y & x \\ 2xe^y & x^2 e^y \end{bmatrix}
The derivatives for each part are:
(a) Df(t)=2tcos(t)tsin(t) D_f(t) = \begin{array}{c} 2t \\ \cos(t) - t \sin(t) \end{array}
(b) fx=2xy3cos(xy)x3y4sin(xy)\frac{\partial f}{\partial x} = 2xy^3 \cos(xy) - x^3y^4 \sin(xy), fy=3x2y2cos(xy)x3y4sin(xy)\frac{\partial f}{\partial y} = 3x^2y^2 \cos(xy) - x^3y^4 \sin(xy)
(c) Df(x,y)=[11yx2xeyx2ey] D_f(x, y) = \begin{bmatrix} 1 & 1 \\ y & x \\ 2xe^y & x^2 e^y \end{bmatrix}

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord