Math  /  Algebra

Question10 л-ийн хоёр савны нэг нь 9%9 \% давсны агууламжтай 5 л, нөгөө нь 5%5 \% давсны агууламжтай 7 л уусмалтай байв. Давсны агууламжийг 6\% болгохын тулд нэгээс нөгөөд хэдэн л уусмал хийх вэ? Агууламж өндөртэй уусмалаас бага агууламжтай уусмал дээр нэмэх замаар 7\% давсны агууламжтай уусмал гаргаж авч чадах уу?

Studdy Solution
To achieve a 7% concentration, set up the equation: 0.35+0.09x7+x=0.07 \frac{0.35 + 0.09x}{7 + x} = 0.07
Solve the equation: 0.35+0.09x=0.07(7+x) 0.35 + 0.09x = 0.07(7 + x)
0.35+0.09x=0.49+0.07x 0.35 + 0.09x = 0.49 + 0.07x
0.09x0.07x=0.490.35 0.09x - 0.07x = 0.49 - 0.35
0.02x=0.14 0.02x = 0.14
x=0.140.02 x = \frac{0.14}{0.02}
x=7 liters x = 7 \text{ liters}
Since transferring 7 liters exceeds the available 5 liters of the 9% solution, achieving a 7% concentration is not possible.
The solution is:
1. Transfer approximately 2.33 liters from the 9% solution to the 5% solution to achieve a 6% concentration.
2. It is not possible to achieve a 7% concentration by transferring solution from the 9% to the 5% solution.

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord