Math / AlgebraQuestion10) g(n)=3n−2h(n)=n3+n Find (g∘h)(n)\begin{array}{l} g(n)=3 n-2 \\ h(n)=n^{3}+n \\ \text { Find }(g \circ h)(n) \end{array}g(n)=3n−2h(n)=n3+n Find (g∘h)(n)Studdy SolutionSimplify the expression:3(n3+n)−2=3n3+3n−2 3(n^3 + n) - 2 = 3n^3 + 3n - 2 3(n3+n)−2=3n3+3n−2Thus, the composition (g∘h)(n) (g \circ h)(n) (g∘h)(n) is:(g∘h)(n)=3n3+3n−2 (g \circ h)(n) = 3n^3 + 3n - 2 (g∘h)(n)=3n3+3n−2 The function (g∘h)(n) (g \circ h)(n) (g∘h)(n) is 3n3+3n−2 \boxed{3n^3 + 3n - 2} 3n3+3n−2.View Full Solution - FreeWas this helpful?