Math  /  Calculus

Question1. Use the definition to find the derivative of each of the following functions: (a) f(x):=x3f(x):=x^{3} for xRx \in \mathbb{R}, (b) g(x):=1/xg(x):=1 / x for xR,x0x \in \mathbb{R}, x \neq 0, (c) h(x):=xh(x):=\sqrt{x} for x>0x>0, (d) k(x):=1/xk(x):=1 / \sqrt{x} for x>0x>0.

Studdy Solution
Combine the fractions in the numerator:
k(x)=limh0xx+hhxx+h k'(x) = \lim_{h \to 0} \frac{\sqrt{x} - \sqrt{x+h}}{h\sqrt{x}\sqrt{x+h}}
Multiply the numerator and the denominator by the conjugate:
k(x)=limh0(xx+h)(x+x+h)hxx+h(x+x+h) k'(x) = \lim_{h \to 0} \frac{(\sqrt{x} - \sqrt{x+h})(\sqrt{x} + \sqrt{x+h})}{h\sqrt{x}\sqrt{x+h}(\sqrt{x} + \sqrt{x+h})}
k(x)=limh0x(x+h)hxx+h(x+x+h) k'(x) = \lim_{h \to 0} \frac{x - (x+h)}{h\sqrt{x}\sqrt{x+h}(\sqrt{x} + \sqrt{x+h})}
k(x)=limh0hhxx+h(x+x+h) k'(x) = \lim_{h \to 0} \frac{-h}{h\sqrt{x}\sqrt{x+h}(\sqrt{x} + \sqrt{x+h})}
Cancel h h in the numerator and denominator:
k(x)=limh01xx+h(x+x+h) k'(x) = \lim_{h \to 0} \frac{-1}{\sqrt{x}\sqrt{x+h}(\sqrt{x} + \sqrt{x+h})}
Evaluate the limit as h0 h \to 0 :
k(x)=12xx k'(x) = -\frac{1}{2x\sqrt{x}}
The derivatives of the functions are: (a) f(x)=3x2 f'(x) = 3x^2 (b) g(x)=1x2 g'(x) = -\frac{1}{x^2} (c) h(x)=12x h'(x) = \frac{1}{2\sqrt{x}} (d) k(x)=12xx k'(x) = -\frac{1}{2x\sqrt{x}}

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord