Math  /  Calculus

Question1) If f(x)={00t<3t,t3f(x)=\left\{\begin{array}{rr}0 & 0 \leq t<3 \\ t, & t \geq 3\end{array} \quad\right., find 0f(t)estdts>0\int_{0}^{\infty} f(t) e^{-s t} d t \quad s>0

Studdy Solution
Combine the results of the integrals from Steps 3 and 10:
0f(t)estdt=0+(3se3s+1s2e3s) \int_{0}^{\infty} f(t) e^{-s t} dt = 0 + \left( \frac{3}{s} e^{-3s} + \frac{1}{s^2} e^{-3s} \right)
0f(t)estdt=(3s+1s2)e3s \int_{0}^{\infty} f(t) e^{-s t} dt = \left( \frac{3}{s} + \frac{1}{s^2} \right) e^{-3s}
Solution: 0f(t)estdt=(3s+1s2)e3s \int_{0}^{\infty} f(t) e^{-s t} dt = \left( \frac{3}{s} + \frac{1}{s^2} \right) e^{-3s}

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord